

lecture 5 The chain rule and optimization

UNIVERSITY OF TWENTE.

academic year	:	18-19
lecture	:	5
build	:	December 10, 2018
slides	:	31

▶ Part 2

This week

- 1 Section 3.6: the chain rule
- 2 Section 3.8: derivatives of logarithms (only pages 176–181)
- **3** Section 4.1: extreme values

2/31

$$x - g - g(x) - f(g(x)) = f \circ g(x)$$

- \blacksquare The composition of f and g is the function that maps x to $f\bigl(g(x)\bigr)$
- The composition is denoted as f

 g, and is pronounced as "f after g".
 Example: let f(x) = x² and let g(x) = x + 1, then

$$f \circ g(x) = f(g(x)) = f(x+1) = (x+1)^2 = x^2 + 2x + 1$$

and

$$g \circ f(x) = g(f(x)) = g(x^2) = x^2 + 1.$$

 \triangle In general $f \circ g$ and $g \circ f$ are *not* identical.

• Let
$$f(x) = ax + b$$
 and $g(x) = \sin(x)$ and define $h = f \circ g$, then
 $h(x) = f \circ g(x) = f(g(x)) = a \sin(x) + b$

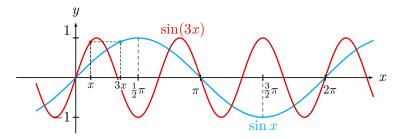
Using the sum rule and constant multiple rule we know that

$$h'(x) = a\cos(x)$$

 $\blacksquare \text{ Now let } h = g \circ f \text{ then}$

$$h(x) = g(f(x)) = \sin(ax+b)$$

The sum- and constant multiple rule cannot be applied



- Consider the special case $h(x) = \sin(3x)$. The graph of h is obtained by scaling $\sin x$ in horizontal direction.
- The slopes of all tangents are scaled too!
- By scaling back $\sin(3x)$ in vertical direction, this effect is cancelled out: $\frac{d}{dx} \left(\frac{1}{3}\sin(3x)\right) = \cos(3x),$ in other and $\frac{d}{dx} = (2, 2) = 2$

in other words: $\frac{d}{dx}\sin(3x) = 3\cos(3x).$

We see that

$$f(x) = \sin(ax) \implies f'(x) = a\cos(ax)$$

By shifting a graph horizontally, the slopes must shift accordingly:

$$f(x) = \sin(ax+b) \quad \Rightarrow \quad f'(x) = a\cos(ax+b)$$

Chain rule, simple version

Let f be a differentiable function. Then for any constant a and b the following holds:

$$\frac{d}{dx}(f(ax+b)) = af'(ax+b).$$

A Warning: $\frac{d}{dx}(f(ax+b))$ is the derivative of the composition f(ax+b), but f'(ax+b) is the composition of f' and y = ax + b.

1.5

- The derivative of $\sin(2x)$ is $2\cos(2x)$.
- Define $y = \sqrt{5 3x}$, then

$$\frac{dy}{dx} = -\frac{3}{2\sqrt{5-3x}}$$

since $\frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}}$.

Also: write 5 - 3x = (-3)x + 5, hence a = -3 and b = 5.

$$\blacksquare \qquad \frac{d}{dx}\left(\frac{1}{2e^x}\right) =$$

Application: the derivative of exponential functions

• See lecture 4: if we define $f(x) = a^x$, then

$$f'(x) = k_a a^x$$

where

$$k_a = \lim_{h \to 0} \frac{a^h - 1}{h} = f'(0).$$

With the simple version of the chain rule we can prove:

$$k_a = \ln a$$

$$\frac{d}{dx}\left(a^{x}\right) =$$

2.1

Chain rule

Let f and g be differentiable functions, then

$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x).$$

- In words: multiply the composition of the derivative of *f* with *g* by the derivative of *g*.
- Work inward:
 - differentiate the 'outer function' *f*, but keep the 'inner function' *g* intact;
 - then multiply with the derivative of the 'inner function' g.

2.2

Example

Find the derivative of
$$h(x) = (3x^2 + 1)^2$$
.

- The function *h* is equal to $h = f \circ g$, where $f(x) = x^2$ and $g(x) = 3x^2 + 1$.
- Apply the chain rule:

$$h'(x) =$$

Anonymous functions

- If a function is named f, the derivative is denoted as f'.
- If y is an anonymous function of x, the derivative is denoted as $\frac{dy}{dx}$.

$$x \longrightarrow y \longrightarrow z$$

If y is a function of x and z is a function of y, then z is (by composition) a function of x. In this case the chain rule is

$$\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}.$$

▲ Note that $\frac{dz}{dy}$ is expressed in terms of y, hence afterwards you should replace all occurrences of y with the corresponding expression in x.

Let
$$y = 3x^2 + 1$$
 and $z = y^2$, find $\frac{dz}{dx}$.

Apply the chain rule (anonymous variant): $\frac{dz}{dx} =$

Find the derivative of
$$f(x) = \frac{1}{\sqrt{x^2 + 1}}$$
.

Avoid using the quotient rule by writing

.

$$f(x) = \left(x^2 + 1\right)^{-1/2}$$

Apply the chain rule:

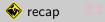
$$f'(x) =$$

Calculate the derivative of
$$f(x) = \sqrt{\frac{1-x^2}{1+x^2}}$$
.

Combine the chain rule with the quotient rule:

$$f'(x) =$$

Logarithms



■ The **logarithmic function with base** *a* is the inverse of the base-*a* exponential function:

$$y = a^x \qquad \Longleftrightarrow \qquad x = \log_a y$$

■ The **natural logarithm** is the logarithm with base *e*:

$\ln x = \log_e x$	W
--------------------	---

where $e \approx 2.71828\ldots$

Examples:

 $\log_2 8 = 3 \qquad \text{because} \quad 2^3 = 8$ $\log_{10} 100 = 2 \qquad \text{because} \quad 10^2 = 100$ $\ln e\sqrt{e} = \frac{3}{2} \qquad \text{because} \quad e^{\frac{3}{2}} = e\sqrt{e}$

Logarithms

$$\log_a 1 = 0 \text{ and } \log_a a = 1$$

$$\log_a xy = \log_a x + \log_a y$$

$$\log_a \frac{x}{y} = \log_a x - \log_a y$$

$$\log_a \frac{1}{y} = -\log_a y$$

$$\log_a x^p = p \log_a x$$

$$\log_a x = \frac{\log_b x}{\log_b a}, \text{ in particular } \log_a x = \frac{\ln x}{\ln a}$$

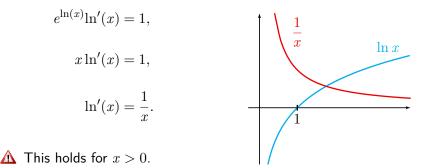
$$a^x = b^{x \log_b a}, \text{ in particular } a^x = e^{x \ln a}$$

3.3

• Note that e^x and $\ln(x)$ are each others inverse:

 $e^{\ln(x)} = x.$

Now take derivatives on both sides and apply the chain rule to the left-hand side:



Theorem

The derivative of
$$\log_a x$$
 is $\frac{1}{x \ln(a)}$.

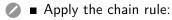
From the change-of-base formula for logarithms follows

$$\log_a(x) = \frac{\ln x}{\ln a}.$$

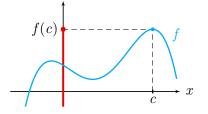
Apply the constant-multiple rule:

$$f'(x) =$$

Find the derivative of
$$f(x) = \ln(x^2 + 3)$$
.



$$f'(x) =$$



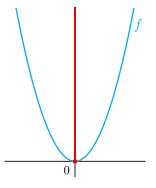
- Consider a function $f: D \to \mathbb{R}$.
 - $\blacksquare f$ has an **absolute maximum** in c if

$$f(x) \leq f(c)$$
 for all $x \in D$

• f has an **absolute minimum** in c if

$$f(x) \geq f(c) \qquad \text{for all } x \in D$$

- A Extreme values do not necessarily have to exist!
- ?? If they exist, how do we find them?

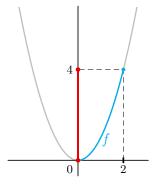


On $D = (-\infty, \infty)$ the function $f(x) = x^2$ has

- an absolute minimum in x = 0;
- no absolute maximimum.

The range of f is $[0,\infty)$.

Extreme values of a function are domain dependent

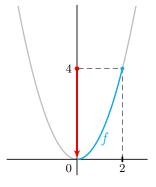


On D = [0,2] the function $f(x) = x^2$ has

- an absolute minimum in x = 0;
- an absolute maximum in x = 2.

The range of f is [0, 4].

Extreme values of a function are domain dependent

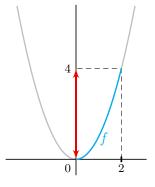


On D = (0, 2] the function $f(x) = x^2$ has

- no absolute minimum;
- an absolute maximum in x = 2.

The range of f is (0, 4].

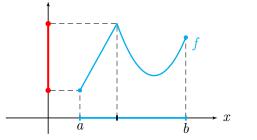
Extreme values of a function are domain dependent



On D = (0,2) the function $f(x) = x^2$ has

- no absolute minimum;
- no absolute maximum.

The range of f is (0, 4).

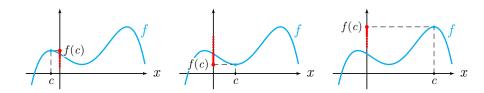


Extreme Value Theorem

A **continuous function** on a **finite closed interval** attains both an absolute maximum and an absolute minimum.

A The theorem tells us that extreme values do exist, but *not* where to find them!

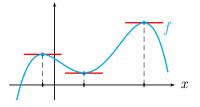
Theorem 1, page 223



Definition

- Consider a function $f: D \to \mathbb{R}$.
 - *f* has a **local maximum** in *c* if
 - $f(x) \leq f(c)$ for all x in an environment of c
 - f has an **local minimum** in c if $f(x) \ge f(c)$ for all x in an environment of c

Critical points



First Derivative Theorem

If f is differentiable at c and f attains a local maximum or local minimum at c then f'(c) = 0.

Definition

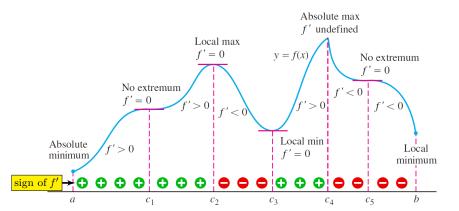
The number c is a **critical point of** f if

f'(c) = 0 or f is not differentiable at c.

Critical points are candidates for a local maximum or minimum.

UNIVERSITY OF TWENTE. Introduction to Mathematics and Modeling Lecture 5: The chain rule and optimization 26/31

Critical points



The function F is defined on the domain [a, b].

- Critical points: c_1 , c_2 , c_3 , c_4 and c_5 .
- Local extremes: a, c_2 , c_3 , c_4 and b.
- Absolute extremes: a and c_4 .

Recipe for computing the extreme values of a continuous function

 $f\colon [a,b]\to \mathbb{R}$

- Find all critical points of f in [a, b], i.e., solve the equation f'(x) = 0and retain all solutions x in [a, b]; then add all points where f is not differentiable.
- **2** Evaluate f at the critical points and at the end points x = a and x = b.
- **3** Take the largest and smallest values found in step 2: these are the absolute maximum and minimum of f on the interval [a, b].

Se Se

Example

Find extremes for
$$f(x) = 10x(2 - \ln x)$$
 on $[1, e^2]$.

1 Find the critical points:

2 Evaluate f at the critical points and at the endpoints: $f(1) = \qquad \qquad f(e^2) =$

- **3** Take the largest and smallest values of step 2:
 - The absolute maximum is
 - The absolute minimum is

Find extremes for $f(x) = xe^{-x}$ on [-1, 1].

1 Find the critical points:

2 Evaluate f at the critical points and at the endpoints: f(-1) = f(1) =

- **3** Take the largest and smallest values of step 2:
 - The absolute maximum is
 - The absolute minimum is

Find extremes for
$$f(x) = 3x^2 - 2x^3$$
 on $\left[-\frac{1}{2}, 2\right]$.

1 Find the critical points:

2 Evaluate f at the critical points and at the endpoints: $f\Big(-\frac{1}{2}\Big)=\qquad \qquad f(2)=$

3 Take the largest and smallest values of step 2:

- The absolute maximum is
- The absolute minimum is

